Tavşanlı Zone field trip, part 2

Yesterday, I shared a few thoughts about the first couple of stops on the field trip I took earlier this month from Istanbul to Ankara, prior to the Tectonic Crossroads conference. Today, we’ll pick up with some images and descriptions from the next few stops.

After lunch, our next stop brought us to a relatively low-metamorphic-grade outcrop of sheared graywacke (dirty sandstone) and shale. As you can imagine, it wasn’t particularly photogenic. Bedding was continuous only over a scale of a meter or two. It’s what suture-zone workers call “broken formation,” part way between undeformed rocks and a full-blown mélange. (It’s internally sheared up, but not yet mixed with adjacent formations.)

Looking back the way we had driven in, though (i.e., looking to the north), we could see the west-ward dipping limb of a large syncline exposed on the mountainside over yonder:


Annotated version:


The Orhanler Formation is the lowermost unit, layers of graywacke and shale that are probably Triassic in age. It is overlain by the thin sandstones of the Bayırköy Formation (Liassic), and then the limestone which is proving so irresistible to quarry excavators, the upper Jurassic Bilecik Limestone.

Our fourth stop was one of the ones that got me really excited. In fact, almost everyone on the trip seemed to get pumped up from visiting this outcrop. Check it out:


The yellow field notebook’s long edge measures ~18 cm. Behind the notebook, my friends, is a layered gabbro. The stripes you see result from differing ratios of light and dark colored minerals — plagioclase and pyroxene, mainly. But why is it layered? Is this an example of a cumulate texture; a primary igneous structure resulting from the settling of crystals onto the floor of a magma chamber? Or is this a tectonic foliation, resulting from strain the rock has accumulated? It was introduced to the participants on the field trip as an example of the former, but several of us found this argument less than totally convincing, as the size of this rock body is ~200 km long and ~2 km thick. It’s awfully hard to envision a magma body that size. I found it easier to imagine this as a chunk of the mantle, as Alain Tremblay suggested to the group.

As I poked around the outcrop, I found something which was consistent with a deformational (rather than cumulate) origin to the layering…


That’s an S-fold! Turn this cobble around, and on the other side, you can see a Z-fold:


I suppose that tight little folds like this could have come in some stage of ductile deformation after an original cumulate layer formed, but that would require an episode of deformation not required by the foliation hypothesis. If these are planes formed by mantle flow, I’d expect a few small folds in those layers at the time that flow was forming them. Besides the blueschists and eclogites, the Tavşanlı Zone includes an ophiolitic suite, and having chunks of mantle there would in no way be a shocker.

Regardless of the origin of the mineralogical layering, I think we can all be pleased to learn that it is deformed. A series of “reverse” ductile shear zones cut across the layering, as you may be able to discern in this photo:


Notice how the gabbro’s layers deflect towards the fault(s) in a “drag fold” fashion, tipping over to the left. Close up:


Left of the notebook, you can see this gentle deflection quite nicely:


This is sweet, right? I’m loving it.


A close-up shot that particularly satisfies me:


Note the thinning and rotation of the mineralogical layers as you get closer to the shear band at the center of the shear zone itself (far right of photo). Pen for scale.

We also stopped at a proper peridotite outcrop (no one’s arguing that this one isn’t mantle), which had serpentine veins cutting though it:


More later

By the way, this blog’s move to the AGU servers has been postponed until probably Monday.

Deducing my first anticline

When I was done with my sophomore year at William & Mary, I embarked on a time-honored tradition among W&M geology majors: the Geology 310 Colorado Plateau field course. Jess alluded to this same course in her Magma Cum Laude contribution to this month’s Accretionary Wedge geology blog “carnival,” too.

My version of Geology 310 was led by the legendary Gerald Johnson (a.k.a. “Dr J”), a dynamic and enthusiastic educator who seemed particularly at home in the field. One day, he had us out in Utah (I think) somewhere, and pulled over to the side of the road so we could examine some tilted sandstone layers. We took a strike and dip reading, and plotted it on a map.


Then we descended into a narrow valley, where Dr. J did some “geology at 60 miles per hour,” pointing out shale outcrops in a few places in the valley. Then we drove up the opposite side. We pulled over again. Same sandstone strata: we again took a strike and a dip on the beds. The data was then recorded on our maps with a strike and dip symbol, a broad, squat “T” shape, where the upper bar of the “T” is parallel to the strike of the bedding, and the vertical prong of the “T” is pointing in the dip direction.


“Well,” Dr. J asked us, “What’s going on here?”

We were all silent, trying to puzzle it out. What’s the deal? What is he fishing for? Seconds ticked by, and no one had the right answer. We started to sweat… “Um, the sandstone beds are dipping to the west on the ridge west of the valley,” someone ventured, “and they are dipping to the east on the ridge east of the valley?”

“Yes, but what does that mean?” he replied. Silence…

Eventually, he relented, and spelled it out for us. Imagine this situation from the sides, he suggested, gesticulating the layers dipping off in opposite directions. “These are the same layers, so they were once laterally continuous…” He mimed a cross-sectional perspective:


How could we connect these disparately oriented strata together?


Bam! It hit me: I got the idea of an anticline at that point — the idea that a structure like an anticline could be so large that I couldn’t actually see it from my earthbound human-sized perspective, and I could only infer it from detailed measurements of the rock structures. It was a revelation to me: this valley and its surrounding ridges were part of a massive fold. The anticline must have breached in the middle, with the shale eroding away faster than the sandstone, producing a valley flanked by two ridges.

I’m grateful to Dr. J for putting us through all stages of this exercise: collecting the incremental pieces of data, being forced to think about it in an attempt to come up with an interpretation, and then finally giving us the proper interpretation, once it had become obvious we weren’t going to get it on our own. This last bit is particularly important to me as an educator: sometimes it’s okay to spell it out for students, particularly if it’s their first time walking down a particular path. By revealing the “answer,” Dr. J guided my thinking from data to big picture structure to geomorphological interpretation in a way that I can only describe as “opening up a new pathway” in my mind. Once he showed the way to think about this sort of thing, it was suddenly very easy for me to visualize this sort of complicated four-dimensional story. Once the pathway was there, it was almost effortless to let my thoughts flow along that pathway. Weird how one’s perspective can change in a moment, and how that influences everything that comes after.

For me, this exercise and ensuing discussion constituted an important moment in developing my ability to think like a geologist. I don’t think my brain will ever be the same.

Friday fold: Siccar Point, Scotland

As with last week, I’m going to show you someone else’s fold today. This one should have strong resonance with most geologists, because it’s a fold in the tilted (and contorted) older strata exposed below the famous unconformity at Siccar Point, Scotland:


I found this image on the British Geological Survey’s online repository of images, which are available for public use with attribution. I found out about the BGS photo repository via a post on StructuralGeology.org.

The photo was taken by T.S. Bain in 1979. Rock hammer (lower left) for scale.

The specific rock type here is shale, and their age is Silurian. Note the thinning of the limbs of the fold, and the relatively thick hinge area.

Happy Friday – may your workday rapidly thin (like the limbs of this “similar” fold), and your weekend be as thick as this fold hinge!

Champlain thrust fault


Over the summer, I went up to Vermont to visit my friends the Clearys. Joe Cleary is a college friend and a talented luthier. He and his wife Tree and their children Jasper and Juniper have settled in Burlington, a lively town with a lot of cool stuff going on. Joe took time out one morning to show us a superb example of a thrust fault on the shore of Lake Champlain. It is on private property, but Joe got permission for us to hike there first. Our group that day consisted of Joe, Lily, and me, plus by a stroke of good luck, my pal Pete Berquist was in Burlington at the same time, with his friend Amy. The five us were Team Burlington for the day.

There are two rock units involved in the faulting at this location. Consider the first:


This is the Dunham Dolostone. It’s early Cambrian in age. It’s resistant to erosion, and stands up in cliffs above Lake Champlain. The distance from my ten little piggies down to the water is probably fifty feet. Below the Dunham Dolostone, you can find the Iberville shale. It is actually younger than the overlying dolostone. (We know this from unfaulted stratigraphy elsewhere in the region.) The Iberville shales are Middle Ordovician in age. They are relatively weak (‘incompetent’) rocks, and have been sheared out by the faulting. Here, Team Burlington demonstrates the sense of shear, by leaning over in the direction that foliation has rotated towards:


Looking in one direction along the base of the fault to show the differential weathering of the two units:


Flip it around 180°, and you see the same thing in the other direction:


Pete, Joe, and I crawled underneath the ominously overhanging dolostone to check out the detailed structure of the fault. Here’s Pete tickling the sheared out shales, looking for little sigmas…


The shales had nice veins of calcite running through them, and the high contrast of light and dark reveals some lovely folds, like this one:


Pete goes into professor mode, gesticulating and using the verb “shmoo” to describe the reaction of the shale to a gazillion tons of dolostone sliding over top of it:


Another nice fold (little tiny blue Swiss Army knife, 5.7 cm in length, for scale):


And another nice fold:


This fold is transitioning into a shear band:


Here’s my favorite part of the outcrop, a big fold with little parasitic folds all over it, showing opposite senses of shear on the opposite limbs of the big fold:


S-folds on the upper limb, Z-folds on the lower limb. Sweet, eh?

Here, a sort of S-C fabric has developed, with foliation tipped over the the left, and then near-horizontal shear bands running along through it:


Here’s something weird. Perhaps a reader can explain it. Here’s a shot of some of the veins, with the same 5.7 cm knife for scale:


Now we’ve zoomed in, and you can see some detail in the vein:


What are those lines? Is that more “S-C” fabric? I mean, it can’t be cross-bedding in a vein… but I’m having trouble visualizing what process of shearing the vein could yield such a delicate, even distribution of dark material amid the vein fill. What the heck is going on here?

Okay, now that you’ve twisted your brain up thinking about that, you can relax with a structure whose meaning is obvious. Some artistic and romantic previous visitor (not a member of Team Burlington) had arranged pebbles weathered from the two rock units into a bimodal icon of love:


Displacement along the Champlain Thrust is estimated at 30–50 miles (48–80 km). These dolostones started off near the New Hampshire border, then crossed Vermont, almost but not quite making it into the Empire State! The Champlain Thrust is the westernmost thrust fault that has been associated with the Taconian Orogeny, a late Ordovician episode of mountain building associated with the docking of an island arc with ancestral North America. Looking up at the fault trace:


A final glance at the thrust outcrop, looking north and showing the fault’s gently-inclined easterly dip:


Joe, thanks for taking the time to bring us out there!

Geology of Massanutten Mountain, Virginia

Here’s a new video from Greg Willis, the same guy who brought us a fine video on Piedmont geology. In this new opus (20 minutes), Greg details the geology of the Massanutten Synclinorium (Shenandoah Valley, Massanutten Mountain, and Fort Valley) in western Virginia. WordPress isn’t letting me embed it here, but you should go and check it out!


Get every new post delivered to your Inbox.