Another metamorphosed graded bed

Over the summer, when my blogging access was limited to my iPhone, I uploaded a photo (taken with the iPhone) of a metamorphosed graded bed on the summit of Mount Washington, New Hampshire.

Here’s another one that I saw, further down on the mountain, on the Auto Road (famous for its iconic bumper sticker):

Lens cap for scale. …And here’s the obligatory annotated copy:

Both of these images are enlargeable by clicking through (twice).

I think today’s photos are of better quality than the iPhone photo. This is the coolest freakin’ thing ever. What you have here are alternating beds of quartzite and andalusite schist. The boundaries between the two rock units are alternately crisp and gradational. Interpretation? Once upon a time, you had a turbidite sequence where the bigger, heavier grains (quartz sand) settled out first, followed by progressively finer and finer mud. The base of the graded bed is a crisp transition from mud to sand, but then as you go up through the graded bed, it grades from sand into mud.

Later, these distinctive primary structures were metamorphosed during the late Devonian-aged east coast mountain building episode called the Acadian Orogeny. The high temperatures and pressures cooked the rock. The sandy part, dominated by quartz, didn’t really change mineralogy much under the metamorphic conditions. The muddy part, on the other hand, was chock full of clay minerals which are not in equilibrium under elevated temperatures and pressures, so they reacted chemically. Their elements reorganized into new minerals: big honkin’ crystals of the mineral andalusite. They might just as well have reorganized into sillimanite or kyanite if conditions were slightly different, but temperature dominated over pressure, so andalusite was the mineral form that was stable (at equilibrium) under those conditions.

As a result, the “mud” was now coarser grained than the “sand.” The overall sense of grading had been flipped by the metamorphosis, yet the overall crisp/gradual pattern was preserved. This, my friends, is exquisite.

Advertisements

Mineral phantasms?

Ice… serpentine… halite… What do they all have in common?

I’ve discussed mineral “ghosts” here before — really, those are only pseudomorphs, where one mineral’s chemistry becomes unstable due to a change in conditions, and then a new mineral forms in the same space. I’ve also brought up the issue of clasts of minerals which are unstable over the long term (ice).

Last night, at the final meeting of the Geological Society of Washington for the spring season, Bob Hazen of the Carnegie Institution of Washington gave the Bradley Lecture. Bob discussed his ideas about mineral evolution, and gave a compelling talk.

One of the key implications about thinking about minerals evolving over time is that new mineral species can evolve when conditions change and permit their growth, but so too can old mineral species go ‘extinct’ when conditions change and no longer promote their growth.

This got me thinking about that ice-clast breccia again (link above),  and how that would be interpreted by future geologists, assuming the ice itself has melted away. Consider the geologic record of a superwarm planet, where temperatures never dip low enough to form ice. Would we be imaginative enough to invoke ice as the cause of glacial landforms, of striations and deposits of till? How would we explain dropstones and ice wedges if ice were an “extinct” mineral on Earth?

And so after the talk was over, I went up to Bob and introduced myself and asked him if he could think of (or imagine) other minerals which could profoundly affect the geologic record, yet disappear after they have done their work. As we were talking, it occurred to me that halite in the form of salt domes could perturb the local stratigraphy, then the salt diapirs could rise up to the surface and be eroded (or re-dissolve into the ocean), leaving a piercing trail of destruction in their wake.

Bob came up with another one: serpentine at a subduction zone: hydrothermal alteration of oceanic crust produces serpentine, but then the serpentine is unstable when it gets subducted. It dehydrates (gives off water), and (poof!) there’s no more serpentine minerals. However, this dehydration is super duper important geologically: the addition of that water to the hot rocks of the subduction zone lowers the melting temperature of the rocks, and helps generate magma: the magma that rises to feed volcanic arcs. If we didn’t have oceanic crust to look at, would we have imagined serpentine beneath our convergent boundaries, a humble transformer of the world above?

Readers, I put the same question to you: Which minerals cause big effects, but then disappear? Who are the prime movers who flee the scene of the crime? These are minerals that aren’t just ghostly; they’re downright phantasmic!  I’ll be eager to read your suggestions, or hear your thoughts on the three I’ve noted here.

Blobiform

Whilst poking about Sunday on the fine exposures along West Virginia’s new route 55, my structural geology students and I noticed some joint surfaces decorated with pyrolusite dendrites. But I also found a nice slab which had one surface covered with a thicker coat of manganese oxide, and here the habit was botryoidal, like little bunches of grapes. A few photos for you:

55_03

55_04

55_05

Because I don’t care as much for minerals as I do for structures, I donated it to the mineralogy teaching collection at GMU…

Crystal ghosts

The first time I went to the Billy Goat Trail (Potomac, Maryland) with geology as the goal (as opposed to mere recreation), it was 2002. The trip was led by a professor at the University of Maryland. I was a graduate T.A. then, and didn’t know anything about the local geology. I remember at the end of the trip, the professor sent us out to search for “kyanite ghosts” (pseudomorphs of sericite after kyanite, produced during retrograde metamorphism). We didn’t find them on that trip, but the evocative phrase “kyanite ghost” stuck in my head.

Several years later, after I had cultivated a deeper understanding of the story told by Billy Goat Trail rocks, I was poking around in the area near the trail’s “emergency exit,” and found something that fit the “kyanite ghost” bill. I took a photograph of it:

ghosts_3

My next step was to confirm what I found with my mentor and local rock guru, the geologist E-an Zen. E-an had been training me to take over leading geology hikes as a volunteer for C&O Canal National Historical Park. I e-mailed him the photo above. E-an wrote back to congratulate me on finding and photographing the exact same outcrop that was used in Cliff Hopson’s 1964 book The Crystalline Rocks of Howard and Montgomery Counties to illustrate the pseudomorphs. Hopson used a pencil for scale, and I used a Swiss Army knife, but otherwise the photos are identically composed:

hopsonImage: Plate 20, Figure 2; Hopson (1964)

That’s pretty uncanny, eh? Two photos taken just over half a century apart, of the exact same square foot of clue-bearing rock.

So, we have here large, bladed crystals that formed as porphyroblasts of metamorphic minerals during prograde (↑P,↑T)  metamorphism, then those same porphyroblasts found themselves unstable as temperatures and pressures dropped (retrograde metamorphism; ↓P,↓T). Their elemental constituents found themselves in disequilibrium, re-reacted, and formed new minerals which occupied the same space and shape as the large, bladed porphyroblasts. Today, you’ll finded that these “large, bladed crystals” are really aggregates of sericite (super-fine-grained muscovite).

So the question is, what were the metamorphic porphyroblasts that formed at peak P/T (and were subsequently replaced)? I mentioned kyanite as one possibility, right? However, Hopson noted these ‘ghostly’ shapes as “sillimanite (?).” Kyanite and sillimanite have a lot in common, but they aren’t the same thing. Like their polymorph andalusite, both kyanite and sillimanite have the chemical formula Al2SiO5. Both also grow in long bladed crystals. Check out these examples to prove this to yourself: kyanite | sillimanite

But in spite of these similarities, there’s a big difference between kyanite and sillimanite: they are stable at different combinations of temperature and pressure. Consider this classic P/T diagram:

Al2SiO5 triple point

If the sericitized pseudomorphs on the Billy Goat Trail were once sillimanite, then it implies higher temperatures. If they were once kyanite instead, then the temperatures were potentially lower. These rocks have plenty of un-retrograded sillimanite, but George Fisher (1971) was the one to invoke kyanite as the peak-P/T-porphyroblasts. He uses petrologic evidence to make the case that they were once close to ky/and/sil triple point. He says:

…the pelitic rocks contain many stubby crystals of andalusite, partially altered to sillimanite, and now largely pseudomorphed by fine aggregates of sericite. Andalusite partially altered to sillimanite is common at this end [south] of the island*, while at the north end of the island only bladed crystals of kyanite altered to sillimanite have been found. It appears as if the rocks at this end of the island must have entered the sillimanite field from the andalusite field, while the rocks farther north entered the sillimanite field from the kyanite field. If so, the rocks in the center of the island must have passed close to the triple point in the system Al2SiO5., about 5000 bars pressure [0.5 Gpa], and 650° C. The presence of muscovite and quartz in the sillimanite-bearing rocks reinforce this conclusion…

I assume he’s basing those statements on detailed petrologic evidence, but I haven’t seen his thin sections myself.

Tangentially, we’ve only been discussing the metasedimentary rocks so far, but E-an Zen and Phillip Candela point out in a 1998 guide to the area (for the University of Maryland geology department’s 25th anniversary hike) that the amphibolite units (meta-igneous, presumably) also contain kyanite or sillimanite but have not melted, which suggests temperatures in the range of 540° to 680° C, and pressures between 4.2 and 7 kbar (0.7 GPa).

So which is it? Kyanite or sillimanite? I can’t claim to know the answer: perhaps someone with more metamorphic petrology experience than me can shed some light on which mineral they they think they see in these ghostly pseudomorphs.

When I was out on the Billy Goat Trail last Friday with my GMU Structural Geology students, we ended up in that same general area. I challenged them to find the pseudomorphs, and it wasn’t five minutes before several of the students found excellent (though small) outcrops. Not the one that Cliff Hopson and I found, but other ones! Here are some shots to show their discoveries:

IMG_2710

IMG_2709

IMG_2711

I have two questions for you: (1) What’s your favorite example of retrograde metamorphism? and (2) Have you had a similar photographing-the-same-spot-someone-else-did-many-years-before-you experience?

______________________________________________

Bierman, Paul, Zen, E-an, Pavich, Milan, and Reusser, Luke (2004). The Incision History of a Passive Margin River, the Potomac Near Great Falls, in USGS Circular 1264: Geology of the National Capital Region. Field trip guidebook.

Fisher, George  W. (1971). The Piedmont crystalline rocks at Bear Island, Potomac River, Maryland. Maryland Geological Survey Guidebook No. 4, prepared for the 1971 annual meeting of the Geological Society of America, Field Trip No. 4.

Hopson, Clifford A. (1964). The Crystalline Rocks of Howard and Montgomery Counties. Maryland Geological Survey, Baltimore.

Zen, E-an, and Candela, Philip (1998). Department of Geology, University of Maryland: 25th anniversary geology hike to Great Falls, and the Chesapeake and Ohio Canal National Historical Park. Field trip guidebook: September 19, 1998.

* The “island” in question is Bear Island, which is not really an island (except during times of highest flooding). It’s just the land between the C&O Canal and the Potomac River in the vicinity of the Billy Goat Trail.

Sugarloaf

Sunday morning, NOVA adjunct geology instructor Chris Khourey and I went out to Sugarloaf Mountain, near Comus, Maryland, to poke around and assess the geology. Sugarloaf is so named because it’s “held up” by erosion-resistant quartzite. It’s often dubbed “the only mountain in the Piedmont,” which refers to the Piedmont physiographic province. Here’s a map, made with GeoMapApp and annotated by me, showing the general area:

A larger version of the map can be viewed by clicking here.

On the far west, you can see the Valley & Ridge province, which ends at the Blue Ridge Thrust Fault. Then the Blue Ridge province runs east from the Blue Ridge itself to Catoctin Mountain. From there, you enter the Piedmont, including both the “crystalline” Piedmont (Paleozoic metamorphism of various ocean basin protoliths, plus infusions of granite) and the Culpeper Basin, a Triassic/Jurassic rift valley. The Potomac River cuts a series of three spectacular water gaps across the Blue Ridge province just west of Sugarloaf. Harpers Ferry, West Virginia, is located at the confluence of the Potomac and the Shenandoah Rivers by the westernmost of these water gaps, and the name for the easternmost one is “Point of Rocks.”

Here’s a look at a detail from the southeastern corner of the geologic map of the Buckeystown, MD quadrangle, by Scott Southworth and David Brezinski:
sugarloaf_geol
sugarloaf_geol_key

The map pattern shows a that the area around Sugarloaf Mountain is a doubly-plunging anticlinorium of Sugarloaf Mountain Quartzite [SMQ] and overlying (younger) Urbana Formation. Overall, it’s got that typical “Appalachian” northeast-southwest trend. Notice the thrust fault on the west side: a typical hanging wall anticline? The ridges, including the summit of Sugarloaf Mountain itself, are held up by the toughest quartzite. This overall “squashed donut” shape shows up pretty well in the physiographic map up at the top of this post.

Sugarloaf is quartzite (metamorphic), but you can clearly see the sand grains that composed its protolith (sedimentary). There’s also reports of cross-bedding, and so Chris asked me to take a look at a few structures to assess them with my point of view. I found a pervasive cleavage in the rock, far more than I would have suspected would be there. We did find bedding exposed as compositional/grain size layers in several locations, including on the summit. I also paid a lot of attention to the many quartz veins which cut the metasedimentary quartzite. These veins of “milky quartz” are often arranged in lovely en echelon series, like these tension gashes:

tension_gash_array_sugarloaf_web

I took the above photo several years ago on a visit there, but it’s typical of the sorts of stuff we saw Sunday. The kinematic sense of this outcrop would be “top to the right.” Interestingly, none of the Sugarloaf outcrops show really deformed tension gashes (i.e., they’re not folded into Z or S shapes like those I showed you a few days ago).

What we really wanted to get a sense of, though, was which way was up in these rocks. We were in search of geopetal structures: primary sedimentary structures that indicate the “younging direction” of the beds. Graded beds can do this, though I didn’t see any unambiguous graded beds in the SMQ on Sunday’s trip. We wanted some cross-beds. We found some hummocky / swaley examples, looking approximately like this USGS photograph (black & white; hammer for scale) of an outcrop somewhere “north of the summit”:

crossbedding_USGS_sugarloafImage source: USGS

Ours wasn’t as beautiful as the one pictured above, but it was clearly hummocky cross-bedding, and it was right-side-up (in beds tilted at ~30°). Interestingly, the SMQ has been correlated by Southworth and Brezinski (2003) with the Weverton Formation of the Chilhowee Group, a rock unit exposed in the Blue Ridge. Just as the Weverton is overlain by the finer-grained Harpers Formation, so too is the SMQ overlain by a finer-grained unit, the Urbana Formation. Both are interpreted as metamorphosed continental margin deposits. The Urbana is mostly phyllite in the areas I’ve seen it (including phyllite that’s full of quartz grains, a first for me). The Urbana is well exposed in a creek-side outcrop north of Sugarloaf Mountain, and I took Chris there to show him the lovely intersection of bedding and cleavage.

Here is a weathered piece of the Urbana Formation that Chris collected there, looking at the plane of cleavage (ruler in background for scale):

urbana Image source: Christopher Khourey

You can see the bedding running ~horizontally across it, though the photo cannot convey the lovely phyllitic sheen that results from waggling these samples back and forth in good light. It’s pretty cool. In places, the transition from sandy to phyllitic is gradational, probably relict graded bedding.

So, what does it mean if Southworth and Brezinski (2003) are correct in their correlation, and the Weverton and the SMQ are really the same rock layer, but in different provinces and at different metamorphic grades? Recall that the Blue Ridge province to the west is also a thrust-faulted anticlinorium, launched up and to the west by the Alleghanian Orogeny from an original position deeper in the crust and further towards the east. It’s a shard of the craton, snapped off and shoved bodily up and to the northwest. (In class, I often liken it to Joe Theismann’s leg: a compound fracture of the continental crust.) Might the Sugarloaf Mountain Anticlinorium [SMA] be a smaller version of the Blue Ridge pulling the same trick? It too is arched up and snapped off …but it would be a “Mini-Me” that’s only just surfacing, like a baby whale swimming above momma whale’s back…

whales_analogy

We know that deeper down in the Blue Ridge stratigraphy, we find the Catoctin Formation, the Swift Run Formation, and the basement complex. If we drilled down through the crest of the SMA, would we find the same units (or more metamorphosed equivalents thereof)? It’s an intriguing thought…

Transect debrief 1: starting in the basement

It is time to debrief the post-NE/SE-GSA field trip that I went on, affectionately dubbed the “Transect Trip” for the past 27 iPhone-uploaded “live”-geoblogged posts.

First off, I’d have to say that I enjoyed the live-field-blogging experiment overall, though I’ve got some critiques of the process and products. I think it’s amazing that I can upload photos and short blog posts from my iPhone to this site with a minimum of hassle. However, I can’t do much more than that. It’s not as easy to tag the posts or geotag the photos. I can’t compose annotations. In fact, I can’t even be sure the photos will be in focus, since the iPhone camera is a static lens. And there’s no macro feature on the iPhone camera, a source of some frustration for a guy like me that likes to photograph small things. Further, typing with my thumbs is laborious, keeping the live-geoblogged posts on the terse side.

So, when I asked what readers thought of the whole enterprise, I wasn’t surprised to get feedback that it would be nice to put things in a bit more context. I aim to start that process today, with the first rock we encountered, a charnockite (orthopyroxene-bearing granitoid). The rock type is named for Job Charnock, founder of Calcutta, India, whose tombstone is made of charnockite:

Charnockites are common rocks in the core of Virginia’s Blue Ridge “anticlinorium.” Here’s a nice photo of a fresh sample, showing the rusty/clayey weathering “rind” on the sample:

tt_1

Compare that image with this version, the original that I uploaded from the field trip via my iPhone:

Pretty profound difference in quality, eh?

So, here’s the deal with these charnockites. Volumetrically, they are a big part of the “basement complex” that cores the Blue Ridge. There are also a bunch of other flavors of granitoid down there; about fifteen discernible rock units in all. Our understanding of the basement complex has gotten a thorough re-working in recent years thanks to the coordinated efforts of many geologists who have focused on reexamining the Blue Ridge. Chief among these scientists in Scott Southworth of the USGS in Reston, who led an effort to remap the area in and around Shenandoah National Park. Dick Tollo (GWU), Bill Burton (USGS), Joe Smoot (USGS), Chuck Bailey (W&M), and John Aleinikoff (USGS) were part of the effort, too. The rocks were found to be more diverse than previously thought, and thus “complex.” Aleinikoff was responsible for a suite of new dates on the granitoids and their metamorphic successors in the basement complex. They have crystallization ages ranging from 1,183 Ma (±11 Ma) to 1,028 Ma (± 9 Ma): all Mesoproterozoic in age, and thought to be related to the Grenville Orogeny.

Some of these granitoids were deformed during Grenvillian mountain-building and attained a foliation which strikes northwest, in contrast to the later (Paleozoic) Appalachian foliation, which strikes northeast.

The plutonic rocks of the Blue Ridge province’s basement complex are the oldest rocks in Virginia, and they were the first ones we encountered on this field trip. All through that first day, we climbed upward through the stratigraphic column, meeting younger and younger rocks.

Pyrolusite on a pterosaur

All the photos I posted over the weekend here were via iPhone, and hence not particularly high-quality, despite their excellent geological content. Now I’ve downloaded the photos from my real camera, and have a few good ones to show. Here’s a succession of photos of the same specimen of Pterodactylus longirostrus, each progressively more zoomed in than the last. It’s a late Jurassic pterosaur (140 Ma) from the Solnhofen limestone of Germany.

nyc11

nyc10

nyc12

I mainly took these for the pyrolusite dendrites rather than the fossil itself…