“Those aren’t pillows!”

In the 1987 comedy Planes, Trains, and Automobiles, John Candy and Steve Martin have a funny experience. It involves a cozy hotel room (one bed only) and the two travelers are huddled up for warmth. As he wakes up, John Candy thinks he is warming his hand “between two pillows.” At hearing this, Steve Martin’s eyes pop wide open, and he yells, “Those aren’t pillows!”

They jump up, totally discombobulated. An awkward moment follows.

Well, it’s not quite as awkward, but I had a similar “those aren’t pillows” moment recently. I was out in Shenandoah National Park with my GMU structural geology students, and we stopped off at the Little Stony Man parking area (milepost 39.1 on Skyline Drive). Here’s a figure showing the area in question, from Lukert & Mitra (1986):

You’ll note in the detail map at the right that it shows the nonconformable contact that separates the basement complex (here, the “Pedlar” Formation) from the overlying metabasalts of the Catoctin Formation.You’ll also note that it says “PILLOWS” with an arrow pointing at a specific spot on the trail. The word refers to basaltic pillows, which are breadloaf-shaped primary volcanic structures that form when lava erupts underwater. They are typically the size of a bedroom pillow (especially overstuffed pillows). Here’s some video of pillows erupting.

Pillows have been reported elsewhere in the Catoctin (e.g., near Lynchburg, according to Spencer, Bowring, and Bell, 1989), but this is the only location that I’m aware of where they have been reported in northern Virginia. The implications are not all that tremendous: just that a portion of the Catoctin erupted subaqueously, but it would be a neat thing to show students, especially seeing how close the outcrop is to safe parking.

Well, I’ve been to this area a half-dozen times, and I’ve never been able to find those damn pillows. It’s frustrated me, but I had an additional impetus this time around: I ran into Jodie Hayob, the petrology professor from Mary Washington University, who was out there with her students for the day. First thing we said to one another? You guessed it: “Did you find the pillows?”

While the students ate their lunches, I went off downhill (to the west), exploring and looking for these confounded pillows. Pretty soon, I found something that looked vaguely pillowy, at least in terms of have a well-defined “crust” with a dark interior (click through that link for a fine Canadian pillow, courtesy of Ron Schott). Prepare yourself for a lot of photos today… Here’s what I saw:

not_pillow_01

A few meters further downhill, I found another outcrop of the same stuff, this one veiled in a thin layer of algae (ahh, the joys of east coast geology!):

not_pillow_02

Little double-ridges which varied in parallel, defining small chunks of rock. Could these be the fabled pillows? But they’re …so small! They’re almost pincushions! I know they say size doesn’t matter, but it’s hard for me to picture a volume of lava this small hitting water and “inflating” to such a puny volume with a nice quenched glassy rind, but then having the interior to stay hot enough to crystallize into basalt. Hmmm. Starting to think something’s fishy with this subaqueous tale…

I then found a nice big cliff, 10 meters high and 20 meters wide, which was made of almost nothing but these structures. Here’s some of them highlighted by the sun (the boundary ridges weather out in high relief), despite being obscured beneath several layers of lichen:

not_pillow_03

not_pillow_04

A relatively clean, but relatively unweathered sample:

not_pillow_05

Aha, now that’s better:

not_pillow_06

The next two show more of a “classic” Catoctin coloring: chlorite green when fresh, with buff weathered surfaces on the outside:

not_pillow_07

Zooming in on one small, skinny purported “pillow”:

not_pillow_08

I climbed back up and coerced some students into joining me to check these weird things out, and they clambered down. Danny W. found a nice chunk of float which showed one of the “pillows” in three dimensions. Check it out at the top of this sample:

not_pillow_09

Three-dimensional extension courtesy of Photoshop; red line shows the long axis of this oblate ~ellipsoid plunging towards the camera. (Lara laughs in the background…)

not_pillow_09_anno

Okay; two more… Check out how angular the boundaries of these “pillows” are:

not_pillow_11

Seeing this one really made me think: No way; “those aren’t pillows!“…

not_pillow_10

…Seeing that angular “break” on the left led me to realize that not only are these things too small* to be pillows, they also don’t have the right shape. Instead of being “pillowy,” (i.e., round) they are very angular, defined by edges that are aligned in a common direction and continue from one to the next.

* Where “too small” is defined as “smaller than anything Callan has seen before.”

I sketched in some of these planar edges:

not_pillow_10_anno

To me, it looks like what’s happening here is that original homogeneous rock of the Catoctin Formation fractured, and then fluids flowed along those fractures, altering the rock that the fluids came into direct contact with. This produced the “double ridge” of buff-colored rock (on either side of the fracture), with the less-altered greenstone interiors being beyond the reach of these altering fluids. The intersection of the various joints and their subsequent boundary-defining alteration would look something like this example (from the online structure photo collection of Ben van der Pluijm): definitely click through to check it out.

In other words, I interpret these structures to be secondary, not primary. The end result is something that looks a lot like “boxwork” (again, please click through to get a sense of what I’m suggesting here): a phenomenon that occurs when limestone fractures, more resistant mineral deposits are precipitated in those fractures, and then the limestone blocks are dissolved away, leaving behind the “fractures” as planar ridges separating little “boxes” from one another.

Here’s two photos of boxwork, one whole-sample, one zoomed-in. This sample is in the USGS library in Reston, Virginia, and both photos were taken at my request by Bill Burton of the Survey. (Thanks Bill!)
boxwork1

boxwork2

At Little Stony Man, of course, the greenstone hasn’t “dissolved” away, but it does appear to be weathering more rapidly than the resistant buff-colored edges to these blocks, producing a distinctly boxwork-like effect.

Let’s look back at some of my field photos again, this time with the pillow boundaries highlighted in red…

not_pillow_11
not_pillow_11_anno

not_pillow_01
not_pillow_01_anno

not_pillow_03
not_pillow_03_anno

not_pillow_05
not_pillow_05_anno

(…I definitely could have hit a few more boundaries on that last one; forgive me for being haphazard and slapdash…)

not_pillow_06
not_pillow_06_anno

This exercise convinced me that these things are not pillows, but some sort of fluid-rock interaction effect that took place on a complex fracture network. There’s no reason for the sharp edges of two adjacent pillows to be perfectly parallel and aligned.And it strains credulity to imagine ultra-tiny pillows in the first place (the size of my fingernail? Come on!).

I’ve e-mailed one of the authors of the original paper claiming pillows in this area with a link to my photos asking if these things are what he and his co-author were referring to, but I haven’t heard back anything. (I’ll update this post if he responds.) I might be totally off base here, but I can see how someone could make the claim that these were pillows. It’s just not a claim that convinces me, based on these outcrops.

What do you think? Do these look like any pillows you’ve ever seen?

__________________________________________

References:

M.L. Lukert and G. Mitra (1986). “Extrusional environments of part of the Catoctin Formation.” Trip #45 in Geological Society of America Centennial Field Guide – Southeastern Section, pp.207-208.

E.W. Spencer, C. Bowring, and J.D. Bell (1989). “Pillow lavas in the Catoctin Formation of Central Virginia.” in Contributions to Virginia geology, volume VI. Virginia Division of Mineral Resources publication 88, pp. 83-91.

Advertisements

3,2,1, Contact!

On my structure field trip just over a week ago, we found the contact between the Mesoproterozoic-aged Blue Ridge basement complex and the overlying Neoproterozoic Catoctin flood basalts (now metamorphosed to greenstone). This nonconformity can be found just west of the Appalachian Trail at the Little Stony Man parking area in Shenandoah National Park. Here’s four photos, with my left index finger for scale, in raw and annotated versions:

unconf_01

unconf_01_anno

It’s not as glaringly obvious as some other unconformities profiled here, but it’s an important horizon in understanding the geologic history of the mid-Atlantic region.

unconf_02

unconf_02_anno

In places, small inclusions of the basement complex may be found inside the base of the Catoctin Formation, a nice example of the principle of relative dating by inclusions. The basement rock must be older than the Catoctin if pieces of the basement have been broken off and enveloped in the Catoctin:

unconf_03

unconf_03_anno

You’ll notice that the Swift Run Formation isn’t present at this location, though stratigraphically, it belongs between the basement and the Catoctin. The Swift Run is patchy and discontinuous, probably reflecting low-lying areas on the paleo-landscape, which paleo-hills poked up above the sediment-laden paleo-valleys, and were last to be smothered beneath the advancing flood basalts.

unconf_04

unconf_04_anno

It’s a great pleasure to be able to find and “put your finger on” such a significant surface, such a gap in the geologic record. Given that the basement complex formed during the Grenvillian Orogeny (1.1-1.0 Ga), and the Catoctin erupted sometime before 565 Ma, there’s probably more than 400 million years of time that passed between the formation of the rock below my finger and the rock above it. Unconformity surfaces like this are geologic contacts which are emblematic of time passing, but going unrecorded in the geologic record. They are high-contrast reminders of how incomplete the geologic record is at any single location on the planet. They remind us to be humble in our interpretations. They remind us to strive for a multi-referenced correlation between different locations’ outcrops in order to get closer to the full story of our planet’s checkered past.

Transect debrief 1: starting in the basement

It is time to debrief the post-NE/SE-GSA field trip that I went on, affectionately dubbed the “Transect Trip” for the past 27 iPhone-uploaded “live”-geoblogged posts.

First off, I’d have to say that I enjoyed the live-field-blogging experiment overall, though I’ve got some critiques of the process and products. I think it’s amazing that I can upload photos and short blog posts from my iPhone to this site with a minimum of hassle. However, I can’t do much more than that. It’s not as easy to tag the posts or geotag the photos. I can’t compose annotations. In fact, I can’t even be sure the photos will be in focus, since the iPhone camera is a static lens. And there’s no macro feature on the iPhone camera, a source of some frustration for a guy like me that likes to photograph small things. Further, typing with my thumbs is laborious, keeping the live-geoblogged posts on the terse side.

So, when I asked what readers thought of the whole enterprise, I wasn’t surprised to get feedback that it would be nice to put things in a bit more context. I aim to start that process today, with the first rock we encountered, a charnockite (orthopyroxene-bearing granitoid). The rock type is named for Job Charnock, founder of Calcutta, India, whose tombstone is made of charnockite:

Charnockites are common rocks in the core of Virginia’s Blue Ridge “anticlinorium.” Here’s a nice photo of a fresh sample, showing the rusty/clayey weathering “rind” on the sample:

tt_1

Compare that image with this version, the original that I uploaded from the field trip via my iPhone:

Pretty profound difference in quality, eh?

So, here’s the deal with these charnockites. Volumetrically, they are a big part of the “basement complex” that cores the Blue Ridge. There are also a bunch of other flavors of granitoid down there; about fifteen discernible rock units in all. Our understanding of the basement complex has gotten a thorough re-working in recent years thanks to the coordinated efforts of many geologists who have focused on reexamining the Blue Ridge. Chief among these scientists in Scott Southworth of the USGS in Reston, who led an effort to remap the area in and around Shenandoah National Park. Dick Tollo (GWU), Bill Burton (USGS), Joe Smoot (USGS), Chuck Bailey (W&M), and John Aleinikoff (USGS) were part of the effort, too. The rocks were found to be more diverse than previously thought, and thus “complex.” Aleinikoff was responsible for a suite of new dates on the granitoids and their metamorphic successors in the basement complex. They have crystallization ages ranging from 1,183 Ma (±11 Ma) to 1,028 Ma (± 9 Ma): all Mesoproterozoic in age, and thought to be related to the Grenville Orogeny.

Some of these granitoids were deformed during Grenvillian mountain-building and attained a foliation which strikes northwest, in contrast to the later (Paleozoic) Appalachian foliation, which strikes northeast.

The plutonic rocks of the Blue Ridge province’s basement complex are the oldest rocks in Virginia, and they were the first ones we encountered on this field trip. All through that first day, we climbed upward through the stratigraphic column, meeting younger and younger rocks.

Is this dike a feeder?

ResearchBlogging.org

A new paper in the journal Geology examines an interesting question: how can you tell feeder dikes from non-feeder dikes?

The answer is, normally you can’t. Normally, there’s no way to tell for sure whether a given dike actually funneled magma to the paleo-surface, or whether it never reached the paleo-surface. The reason for this is that usually, the paleo-surface is gone by the time the dike is exposed at the modern surface to your scrutiny. In the new paper, a team of Japanese researchers examined the plumbing of Miyakejima Volcano, which collapsed during an eruption in the year 2000. The collapse opened up a view into the volcano’s “guts,” which showed the anatomical details of many dikes.

Here’s Figure 2B from the paper (reproduced, as with Figure 3 below, with permission of the publishers of Geology), showing the extraordinary exposures on this volcano. The authors report that they were able to trace an individual dike for more than 350 meters. In this example, you can follow a feeder dike up 150 m to find where it erupted at the paleosurface in a cinder cone!

So, given such an extraordinary exposure, how do you go about assessing the geometries of the dikes? The research team used photography as their tool. Hopefully it will be obvious that examining the dikes in person would be difficult and dangerous on a subvertical cliff many hundreds of meters tall — and on an unstable and crumbly volcano, to boot! So they took photos, and then did their measurements based on the photos. They claim a resolution of about 3 cm per pixel at a distance of about 1 km.

Filtering your data through a medium like photography is a good way to introduce error and bias to your study, and the authors took some steps to avoid that. They used good zoom lenses, aimed at the outcrop face from the safety of the opposite side of the caldera, and aimed them straight on to the dike outcrops (i.e., within 10° of the strike of the dikes, not necessarily orthogonal to the cliff face, since there is no guarantee the dike would intersect the cliff face at a right angle): so the apparent thickness was as close as reasonably possible to the true thickness. For each photo, they cut off a 20% margins on each side of the image (total cropped area: -40%), as a guard against the effects of lens distortion. Finally, they double-checked their accuracy by comparing in-person measurements of objects of known size on the caldera rim to their photo-measurements of those same objects.

They defined feeder dikes as those (as in the image above) which were observed to connect directly to the bottoms of spatter cones and diatremes.  They defined non-feeder dikes as those which terminated “either by tapering away inside layers or ending bluntly at layer contacts,” where the ‘layers’ being referred to are pyroclastics and lava flows within this stratovolcano. In total, they tallied up 165 dikes, 93% of which were “non-feeders.” Of these, they selected the 27 best-exposed (21 non-feeders and 6 feeders) for their analysis.

What did they find? To quote from their abstract:

A typical feeder thickness reaches a maximum of 2–4 m at the surface, decreases rapidly to ~1 m at a depth of 20–40 m, and then remains constant to the bottom of the exposure. By contrast, a typical non-feeder thickness reaches a maximum of 1.5–2 m at 15–45 m below the tip, and then decreases slowly with depth to 0.5–1 m at the bottom of the exposure.

Width vs. depth data from five representative non-feeder dikes are plotted in their Figure 3, top row, and three representative feeder dikes in the second row of Figure 3. Check it out:

Feeder dikes open up (get wider) at the surface, but the non-feeder dikes first get wider (gradually positive trend to these plots), and then abruptly pinch out up towards the tip (sudden leftward cant at the top of the plot). The authors ponder these dramatically different profiles, and offer an explanation.

They offer two equations which describe these dike profiles pretty accurately. If you’re not mathematically inclined, take a deep breath. We’ll translate in a few column-inches! The first equation is:

b = (2Po(1-v2)L)/E

where b is the thickness of the dike, Po is the magmatic overpressure (the pressure in excess of the normal stress on the dike at the point of measurement), v is Poisson’s ratio, a measure of how much volume is conserved during strain for the host rock. In other words, when a material is compressed in one direction, how much do the other directions pooch outward? Call it ‘poochiness.’  E is Young’s modulus, a measure of the elasticity of the host rock. L is the “dike-controlling dimension,” that is whichever of the dimensions of the dike (either the dip-dimension or the strike-dimension) is smaller. So, to translate this equation into “English” enough that even Rick Sanchez could understand it, equation #1 says, ” The thickness of a dike of a given height depends on how much pressure the magma opening and filling the dike is under, along with how ‘poochy’ and elastic the host rock is.”

The second equation is:

Po = (ρrρm)gh + ρc + σd

where ρr is the density of the host rock, ρm is the density of the magma, and g is the acceleration due to gravity. The variable h is the dip dimension (height) of the dike (measured upward from the source magma chamber), ρc is the excess magmatic pressure in the source chamber before rupture (dike injection), and  σd is the difference between the maximum and minimum principal stresses. Let’s translate this one, too: “The pressure exerted by the magma filling a growing dike depends on the difference between the density of the magma and the host rock it’s intruding into, as well as the force exerted on the magma by gravity.  Another important factor is whether there are significant tectonic stresses impinging on the dike as it forms.”

So where does that leave us in interpreting Figure 3, showing those different profiles for feeder dikes versus non-feeder dikes? Equation #2 says that the magmatic overpressure in a dike (Po) will increase as the dike propagates upwards (gets taller, in other words: h goes up). And equation #1 says, if the magmatic overpressure increases, then the dike will get thicker. That’s why the non-feeder dikes get thicker and thicker in a nice gradual way as you trace them upwards.

An additional factor is related to the density. You can lower the density of a magma if you allow the gases in it to expand under lower pressure regimes (i.e., at shallower depths). The basaltic lava from this volcano has been previously measured to have about 2% water by weight. As this water exsolves from the magma at shallow depths (lower pressures), it will make bubbles that expand, and lower the density of the magma. However, at shallower depths, the rock surrounding the dike is under less pressure too, so they both decrease their densities in tandem.

Deviations from the expected dike geometries can be observed in some of the field measurements. For instance, in the lower-right-hand corner of Figure 3, dike “110-01” flares out to a wider thickness right as it crosses a stratum of “poorly consolidated scoriaceous tuff” within the volcano. The authors suggest that this rock type has a lower Young’s modulus. Because it’s poorly consolidated, it’s less elastic. A lower E value in equation #1 results in a larger b value, the thickness of the dike. Cool!

Now, the feeder dikes have a constant thickness all the way up. To the authors of the paper, this suggests that in the course of the eruption, these dikes reached a stress equilibrium with the surrounding host rock. Magma, being fluid, flowed away from highly-pressurized zones, and the dike thickness “evened out.” And why do the feeder dikes abruptly get wider at the top? The authors postulate a couple of possible reasons: First to consider is the elastic free-surface effect, which is essentially saying that as a dike approaches the surface of the Earth, half of the surrounding rock elasticity is lost (replaced by air), and so that control “hemming in” the dike is lost, and the dike expands. Second, erosion is probably an important factor, as the flowing magma churns away at the wall rock, breaking it down thermally as well as dynamically. In other words, some of the rock that used to be there at the edge of the fissure has been abraded or melted away as a consequence of all that lava flowing out of the dike and away over the surface.

Take home message? To quote the authors, “Feeders propagate and grow as non-feeders before they reach the surface. Therefore, the geometric difference between these types of dike… is primarily a reflection of the feeders reaching the surface.”

I’m interested in feeder dikes because Neoproterozoic feeder dikes of the Catoctin Formation are a significant piece of the geologic story of Virginia’s Shenandoah National Park:

…But these are interpreted as feeder dikes. To my knowledge, no one has claimed any particular outcrop in the Blue Ridge province as a spot where you can actually see the dike flare out and transition into a Neoproterozoic spatter cone. I picked up the Geshi, et al. paper in the first place because I wanted to know whether there was some measurable aspect of the Shenandoah dikes’ geometries that could tell me if indeed they were feeder dikes. The problem is that the exposure in Virginia (especially vertically) isn’t quite as good as the exposure on the inside of Miyakejima’s caldera. We’re lucky if we get 10 meters of vertical exposure, and there’s no suggestion from the Miyakejima data that that 10 m is sufficient to “profile” the dike sufficiently precisely to say whether it’s got a feeder geometry or not, especially if you don’t know where in the dike’s profile that 10 m vertical segment lies. So maybe all we Virginians can do is just interpret: we’ve got a bunch of Neoproterozoic dikes cutting basement rock, and atop the basement rock a bunch of Neoproterozoic lava flows, therefore some of those dikes are likely to be feeders.

_____________________________________________________

Geshi, N., Kusumoto, S., & Gudmundsson, A. (2010). Geometric difference between non-feeder and feeder dikes Geology, 38 (3), 195-198 DOI: 10.1130/G30350.1