Champlain thrust fault

champlain_01

Over the summer, I went up to Vermont to visit my friends the Clearys. Joe Cleary is a college friend and a talented luthier. He and his wife Tree and their children Jasper and Juniper have settled in Burlington, a lively town with a lot of cool stuff going on. Joe took time out one morning to show us a superb example of a thrust fault on the shore of Lake Champlain. It is on private property, but Joe got permission for us to hike there first. Our group that day consisted of Joe, Lily, and me, plus by a stroke of good luck, my pal Pete Berquist was in Burlington at the same time, with his friend Amy. The five us were Team Burlington for the day.

There are two rock units involved in the faulting at this location. Consider the first:

champlain_17

This is the Dunham Dolostone. It’s early Cambrian in age. It’s resistant to erosion, and stands up in cliffs above Lake Champlain. The distance from my ten little piggies down to the water is probably fifty feet. Below the Dunham Dolostone, you can find the Iberville shale. It is actually younger than the overlying dolostone. (We know this from unfaulted stratigraphy elsewhere in the region.) The Iberville shales are Middle Ordovician in age. They are relatively weak (‘incompetent’) rocks, and have been sheared out by the faulting. Here, Team Burlington demonstrates the sense of shear, by leaning over in the direction that foliation has rotated towards:

champlain_02

Looking in one direction along the base of the fault to show the differential weathering of the two units:

champlain_04

Flip it around 180°, and you see the same thing in the other direction:

champlain_06

Pete, Joe, and I crawled underneath the ominously overhanging dolostone to check out the detailed structure of the fault. Here’s Pete tickling the sheared out shales, looking for little sigmas…

champlain_05

The shales had nice veins of calcite running through them, and the high contrast of light and dark reveals some lovely folds, like this one:

champlain_03

Pete goes into professor mode, gesticulating and using the verb “shmoo” to describe the reaction of the shale to a gazillion tons of dolostone sliding over top of it:

champlain_07

Another nice fold (little tiny blue Swiss Army knife, 5.7 cm in length, for scale):

champlain_09

And another nice fold:

champlain_10

This fold is transitioning into a shear band:

champlain_16

Here’s my favorite part of the outcrop, a big fold with little parasitic folds all over it, showing opposite senses of shear on the opposite limbs of the big fold:

champlain_12

S-folds on the upper limb, Z-folds on the lower limb. Sweet, eh?

Here, a sort of S-C fabric has developed, with foliation tipped over the the left, and then near-horizontal shear bands running along through it:

champlain_11

Here’s something weird. Perhaps a reader can explain it. Here’s a shot of some of the veins, with the same 5.7 cm knife for scale:

champlain_13

Now we’ve zoomed in, and you can see some detail in the vein:

champlain_18

What are those lines? Is that more “S-C” fabric? I mean, it can’t be cross-bedding in a vein… but I’m having trouble visualizing what process of shearing the vein could yield such a delicate, even distribution of dark material amid the vein fill. What the heck is going on here?

Okay, now that you’ve twisted your brain up thinking about that, you can relax with a structure whose meaning is obvious. Some artistic and romantic previous visitor (not a member of Team Burlington) had arranged pebbles weathered from the two rock units into a bimodal icon of love:

champlain_08

Displacement along the Champlain Thrust is estimated at 30–50 miles (48–80 km). These dolostones started off near the New Hampshire border, then crossed Vermont, almost but not quite making it into the Empire State! The Champlain Thrust is the westernmost thrust fault that has been associated with the Taconian Orogeny, a late Ordovician episode of mountain building associated with the docking of an island arc with ancestral North America. Looking up at the fault trace:

champlain_15

A final glance at the thrust outcrop, looking north and showing the fault’s gently-inclined easterly dip:

champlain_14

Joe, thanks for taking the time to bring us out there!

Advertisements

Tipping your tension gash

Tension gashes are small veins that open up when rocks get stretched. Often, they are arrayed en echelon with respect to other tension gashes, all oriented in the same direction. Here is a sample of tension gashes I found this summer in rip-rap (i.e., not in situ) at some building site in New England. (I forget where, but it doesn’t matter, since it’s rip-rap. Could have come from anywhere!) Check out the lovely veins of milky quartz:

tension_gash_LS_01

We’ve seen this sort of thing before. So how does this form? It takes a series of steps. First, the rock gets sheared along some zone. Tension fractures open up oblique to that zone (as shown by the arrows here) and get filled it with mineral precipitations:

tension_gash_LS_01a

As shearing continues (with the same kinematics), these short mineral veins experience rotation (dextral, in this case) and perhaps some folding:

tension_gash_LS_01b

The more shearing you get, the more rotation and folding of the gashes:

tension_gash_LS_01c

tension_gash_LS_01d

tension_gash_LS_01e

You get the idea, right?

Here it is in summary:

I’m loving animated GIFs these days. So flippin’ cool, right?

Here’s the back side of the same sample, where you can see that a central fault has ruptured through the lovely tension gashes. It’s not as well-developed on the front side:
tension_gash_LS_02

Poor things. It’s such a shame when ductile structures go brittle.

“Geology of Skyline Drive” w/JMU

I mentioned going out in the field last Thursday with Liz Johnson‘s “Geology of Skyline Drive” lab course at James Madison University.

We started the trip south of Elkton, Virginia, at an exposure where Liz had the students collect hand samples and sketch their key features. Here’s one that I picked up:

skyline01

Regular readers will recognize those little circular thingies as Skolithos trace fossils, which are soda-straw-like in the third dimension. Rotate the sample by 90°, and you can see the tubes descending through the quartz sandstone:

skyline03

This is the Antietam Formation, a distinctive quartz sandstone / quartzite in the Blue Ridge geologic province. But at this location, on the floor of the Page Valley and butted up against the Blue Ridge itself, we see something else in the Antietam:

skyline02

Parts of this outcrop are pervasively shattered: a variety of sized clasts of Antietam quartzite are loosely held together in porcupine-like arrays of fault breccia. Turns out that this is the structural signature of a major discontinuity in the Earth’s crust: the Blue Ridge Thrust Fault. This is the fault that divides the Valley & Ridge province on the west from the Blue Ridge province on the east. And here, thanks to a roadcut on Route 340, we can put our hand on the trace of that major fault. Here’s another piece of the fault breccia:

skyline04

After grokking on the tectonic significance of this fault surface, we drove up into Shenandoah National Park, to check out some outcrops along Skyline Drive itself, but it was really foggy. Here’s a typical look at the team in the intra-cloud conditions atop the Blue Ridge:

skyline05

We checked out primary sedimentary structures in the Weverton Formation at Doyles River Overlook (milepost 81.9), like these graded beds (paleo-up towards the bottom of the photo)…

skyline07

…and these cross-beds. You can see that it was raining on us at this point: hence the partly-wet outcrop and glossy reflection at right:

skyline09

Cutting through this outcrop was a neat little shear zone where a muddy layer had been sheared out into a wavy/lenticular phyllonite, with a distinctive S-C fabric visible in three dimensions:

skyline06

Finally, we went to the Blackrock Trail, which leads up to a big boulder field of quartzite described as Hampton (Harpers) Formation. In some places, exquisite cross-bedding was visible, as here (pen for scale):

skyline10

Here’s a neat outcrop, where you can see the tangential cross beds’ relationship to the main bed boundary below them:

skyline11

…And then if you spin around to the right, you can see this bedform (with internal cross-bedding) in the third dimension. I’ve laid the pen down parallel to the advancing front of this big ripple:

skyline08

That last photo also shows the continuing influence of the fog.

Thanks much to Liz for letting me tag along on this outing! It was a great opportunity for me to observe another instructor leading a field trip, and also to discover some new outcrops in the southernmost third of the park.

Quartz veins on Pimmit Run

Last Sunday, I took a solo hike along Pimmit Run in Virginia, accessing the valley via Fort Marcy, a Civil War fortification off of the George Washington Memorial Parkway. As always, I did a bit of geologizing along the route. One theme that emerged from the day’s photos was quartz veins. These veins form when the host rock (in this case, the Sykesville Formation) cracked open in a brittle fashion, then silicon- and oxygen-bearing hydrothermal fluids flowed into that fracture. As the fluids cooled, the silicon and oxygen bonded together and precipitated quartz, sealing shut the fracture like a seam of glue.

Here’s one that I liked because it outcropped both above and below stream level:

qtz01

In several places along Pimmit Run, I saw small zones of saprolitic bedrock, which is basically “rotten rock,” where the Sykesville Formation outcrops have been more pervasively chemically weathered. This one was so soft that I was able to dramatically plunge the blade of my Swiss Army knife into the rotted rock adjacent to an unweathered quartz vein:

qtz03

Oblique view of the same outcrop:

qtz04

As a structural geologist, quartz veins are interesting because they are extensional features whose orientation relates to the stress field these rocks experienced in the distant past. Once formed, however, they can also act as strain markers to show how subsequent deformations have affected these rocks. Here, for instance, is a folded quartz vein:

qtz02

…and here’s a bonus tiger beetle:
tb

Sugarloaf

Sunday morning, NOVA adjunct geology instructor Chris Khourey and I went out to Sugarloaf Mountain, near Comus, Maryland, to poke around and assess the geology. Sugarloaf is so named because it’s “held up” by erosion-resistant quartzite. It’s often dubbed “the only mountain in the Piedmont,” which refers to the Piedmont physiographic province. Here’s a map, made with GeoMapApp and annotated by me, showing the general area:

A larger version of the map can be viewed by clicking here.

On the far west, you can see the Valley & Ridge province, which ends at the Blue Ridge Thrust Fault. Then the Blue Ridge province runs east from the Blue Ridge itself to Catoctin Mountain. From there, you enter the Piedmont, including both the “crystalline” Piedmont (Paleozoic metamorphism of various ocean basin protoliths, plus infusions of granite) and the Culpeper Basin, a Triassic/Jurassic rift valley. The Potomac River cuts a series of three spectacular water gaps across the Blue Ridge province just west of Sugarloaf. Harpers Ferry, West Virginia, is located at the confluence of the Potomac and the Shenandoah Rivers by the westernmost of these water gaps, and the name for the easternmost one is “Point of Rocks.”

Here’s a look at a detail from the southeastern corner of the geologic map of the Buckeystown, MD quadrangle, by Scott Southworth and David Brezinski:
sugarloaf_geol
sugarloaf_geol_key

The map pattern shows a that the area around Sugarloaf Mountain is a doubly-plunging anticlinorium of Sugarloaf Mountain Quartzite [SMQ] and overlying (younger) Urbana Formation. Overall, it’s got that typical “Appalachian” northeast-southwest trend. Notice the thrust fault on the west side: a typical hanging wall anticline? The ridges, including the summit of Sugarloaf Mountain itself, are held up by the toughest quartzite. This overall “squashed donut” shape shows up pretty well in the physiographic map up at the top of this post.

Sugarloaf is quartzite (metamorphic), but you can clearly see the sand grains that composed its protolith (sedimentary). There’s also reports of cross-bedding, and so Chris asked me to take a look at a few structures to assess them with my point of view. I found a pervasive cleavage in the rock, far more than I would have suspected would be there. We did find bedding exposed as compositional/grain size layers in several locations, including on the summit. I also paid a lot of attention to the many quartz veins which cut the metasedimentary quartzite. These veins of “milky quartz” are often arranged in lovely en echelon series, like these tension gashes:

tension_gash_array_sugarloaf_web

I took the above photo several years ago on a visit there, but it’s typical of the sorts of stuff we saw Sunday. The kinematic sense of this outcrop would be “top to the right.” Interestingly, none of the Sugarloaf outcrops show really deformed tension gashes (i.e., they’re not folded into Z or S shapes like those I showed you a few days ago).

What we really wanted to get a sense of, though, was which way was up in these rocks. We were in search of geopetal structures: primary sedimentary structures that indicate the “younging direction” of the beds. Graded beds can do this, though I didn’t see any unambiguous graded beds in the SMQ on Sunday’s trip. We wanted some cross-beds. We found some hummocky / swaley examples, looking approximately like this USGS photograph (black & white; hammer for scale) of an outcrop somewhere “north of the summit”:

crossbedding_USGS_sugarloafImage source: USGS

Ours wasn’t as beautiful as the one pictured above, but it was clearly hummocky cross-bedding, and it was right-side-up (in beds tilted at ~30°). Interestingly, the SMQ has been correlated by Southworth and Brezinski (2003) with the Weverton Formation of the Chilhowee Group, a rock unit exposed in the Blue Ridge. Just as the Weverton is overlain by the finer-grained Harpers Formation, so too is the SMQ overlain by a finer-grained unit, the Urbana Formation. Both are interpreted as metamorphosed continental margin deposits. The Urbana is mostly phyllite in the areas I’ve seen it (including phyllite that’s full of quartz grains, a first for me). The Urbana is well exposed in a creek-side outcrop north of Sugarloaf Mountain, and I took Chris there to show him the lovely intersection of bedding and cleavage.

Here is a weathered piece of the Urbana Formation that Chris collected there, looking at the plane of cleavage (ruler in background for scale):

urbana Image source: Christopher Khourey

You can see the bedding running ~horizontally across it, though the photo cannot convey the lovely phyllitic sheen that results from waggling these samples back and forth in good light. It’s pretty cool. In places, the transition from sandy to phyllitic is gradational, probably relict graded bedding.

So, what does it mean if Southworth and Brezinski (2003) are correct in their correlation, and the Weverton and the SMQ are really the same rock layer, but in different provinces and at different metamorphic grades? Recall that the Blue Ridge province to the west is also a thrust-faulted anticlinorium, launched up and to the west by the Alleghanian Orogeny from an original position deeper in the crust and further towards the east. It’s a shard of the craton, snapped off and shoved bodily up and to the northwest. (In class, I often liken it to Joe Theismann’s leg: a compound fracture of the continental crust.) Might the Sugarloaf Mountain Anticlinorium [SMA] be a smaller version of the Blue Ridge pulling the same trick? It too is arched up and snapped off …but it would be a “Mini-Me” that’s only just surfacing, like a baby whale swimming above momma whale’s back…

whales_analogy

We know that deeper down in the Blue Ridge stratigraphy, we find the Catoctin Formation, the Swift Run Formation, and the basement complex. If we drilled down through the crest of the SMA, would we find the same units (or more metamorphosed equivalents thereof)? It’s an intriguing thought…

Transtensional quartz vein

On last May’s GSW spring field trip to Chain Bridge Flats, I saw a quartz vein:

gsw_sp_FT_09_04

Surely, upon looking at this photograph, you will be struck by the way the vein is not the same thickness along its length, and parts of it appear to be a white line transitioning into a parallelogram, and back into a white line again. What, you make ask, gives?

I think what you’re looking at here is a transtensional quartz vein. Like all veins, this one formed when the host rock (in this case, metagraywacke of the “Sykesville Formation”) cracked open and hot fluids squirted into that fracture. Elements dissolved in the fluid organized themselves into mineral crystals, and precipitated in the void space of the crack, sealing it shut with quartz “glue.”

gsw_sp_FT_09_04_anno

“Transtension” is the word used to describe a kinematic regime which contains elements of transform “shear” (in this case, right-lateral) and tensional stress. Because of the jagged shape of the fracture here, some parts of the fracture are grinding past their neighbors, while other parts are dilating. The dilating parts are only dilating because of the shape of the fracture. The actual motion of the blocks of rock is uniform and non-rotational. We call these little pulling-apart areas “releasing bends.”

On a much larger scale (lithosphere-scale), releasing bends near the surface create pull-apart basins like the Dead Sea. Deeper in the crust, pull-aparts may serve to accommodate pluton emplacement, as has been suggested by Tikoff & Teyssier (1992) for the Tuolumne Intrusive Suite of the high Sierra in California.

This “part-sliding, part-extension” pattern is actually quite common. Here’s another example, this one in a brick sidewalk on Capitol Hill:
cap_03

The same pattern also shows up at the Mid-Atlantic Ridge, where the extensional segments (north-south-oriented) are sites of new oceanic crust being formed, and the fracture networks (east-west-oriented) are sides of transform faults, where the South American Plate slides laterally past the African Plate:
MOR

Where else have you seen this pattern? Use the comments section to share an example or two.