Fine faulting

Check it out: In the canyon of the Jefferson River, Montana, you can find yourself some limestone (Mississippian Madison Group, I think of the Lodgepole Formation) that has seen a wee bit of faulting:

And here’s an annotated copy… Both of these images are enlargeable by clicking through (twice):

Note the quarter for scale: this is very fine faulting (very small offsets). The thing that struck me as cool (and thus photo-worthy) about this outcrop is the sense of offset on the main “master” fault, which runs from upper left to lower right, branching into two strands as it goes. Compare this to the smaller faults which cut through the block between the two strands of the master fold. They show the opposite sense of offset! (Embiggen it if you don’t believe me.)

While the two strands of the master fault show dextral/clockwise kinematics (a “normal” sense of offset with the hanging wall moving down with respect to the foot wall), the smaller faults show sinistral/counterclockwise kinematics: here the right side is climbing up relative to the left side. It looks like what’s happening here is that there is a significant compactional element to the stresses these limestones suffered enjoyed, with σ1 oriented from the upper right towards the lower left. As they were compressed, the broken slivers of the central pod of limestone (bounded by the two strands of the master fault) “bookshelfed” relative to their neighbors: think of encyclopedia volumes slumping down relative to the volume next door. If this is the right interpretation, it would have resulted in shortening of the rock from lower-left to upper-right. At least that’s the best explanation I can come up with for this anomaly. Anyone else want to chime in with an interpretation?

Falls of the James I: pluton emplacement

Last Friday, NOVA colleague Victor Zabielski and I traveled down to Richmond, Virginia, to meet up with Chuck Bailey of the College of William & Mary, and do a little field work on the rocks exposed by the James River.

Our destination was Belle Isle, a whaleback-shaped island where granite has been quarried for dimension stone for many years. The island has also served as a Confederate prison for captured Union soldiers during the U.S. Civil War, and later for various industries. Today, it is preserved as park land, utilized by a wide swath of Richmond’s populace for recreational activities, both licit and non.

Fortunately, a large area of the James’ river bed south of Belle Isle is kept relatively dry by a long low diversion dam upstream. As a result, there are some mighty fine horizontal outcrops of rock:

fallsjames_05

The dam fed water into a hydroelectric power generation station, but that station has been abandoned for some time now:

fallsjames_09

The power plant dam has yielded enough exposure that some bedrock mapping is possible for those with the curiosity and fortitude to attempt it. Here’s a simplified geologic map of the area, authored by Chuck and his student James McCulla:

richmond_map

So you can see that most of the area is covered by sedimentary deposits of both modern and early Cenozoic vintage. Our goal, however, was the more interesting stuff beneath that. (All due respect to my sedimentological colleagues; the Coastal Plain just doesn’t get my juices flowing like ‘crystalline’ rocks do!)

So here’s what we came to see, the Petersburg Granite:

fallsjames_10

This is an Alleghanian pluton, ~320 Ma, and quite large: it extends for tens of kilometers north and south (Petersburg, the namesake locality, is to the south). It disappears beneath the Coastal Plain to the east, and beneath the Richmond Basin (a Triassic rift valley) to the west.

You can see from the photo above that in some places the Petersburg Granite is massive and equigranular, and in other places it’s “foliated,” with long dark lines running through it. These lines are schlieren, curtainlike zones of differing mineral ratios: more mafics than felsics, for instance. The schlieren (German for “lines”) are usually interpreted as magmatic flow structures as higher-temperature-crystallizing mafic crystals raft together in a more felsic flow. At Belle Isle, the schlieren are steeply dipping and trend NNE.

In places, there were also pegmatite bodies that were concordant (~parallel) with this overall magmatic fabric. Here’s an example of that texture:

fallsjames_01

And here’s a really big crystal of K-feldspar set amid finer-grained granitic groundmass. I guess you could call this a “megacryst”:

fallsjames_04

Another thing we saw a lot of were dark-colored inclusions in the granite. These were dark due to lots and lots of biotite mica in them. Here’s an example; notice how the schlieren wrap around it:

fallsjames_06

And another, with its long axis oriented parallel to the strike of the schlieren, suggesting alignment in the magma chamber before the granite set up:

fallsjames_07

How should we interpret these mafic inclusions? Are they xenoliths; fragments of country rock that were broken off and included in the intruding granitic magma? Or do they represent a plutonic emplacement process — perhaps an earlier stage of crystallization, or an immiscible bolus of mafic magma floating like a lava lamp blob in the surrounding felsic melt? When they’re fine grained and lacking internal structures, as with the above examples, it’s really hard to make that call.

On the other hand, this one clearly shows fragmentation along the right edge, suggesting to me that it was a coherent xenolith at the time the enveloping granite set up into solid rock:
fallsjames_08

That rules out the fluid-blob-within-another-fluid hypothesis, but is it country rock?

This one suggests that it is indeed country rock, as it is both foliated and kinked internally:
fallsjames_11

Here’s a heart-shaped inclusion which also suggests that it is a genuine xenolith. As with the previous example, it displays internal foliation that has been folded:

fallsjames_12

Victor ponders these xenoliths, as well as a dense clot of biotite (dark steak next to the yellow field notebook – not Chuck’s shadow, but parallel to it and closer to the photographer’s vantage point):

fallsjames_13

The photo above also shows how the schlieren wrap around these xenoliths. Here’s an example where the schlieren “tails” leave the xenolith “higher up” on the left side than the right side, suggesting a sinistral (counterclockwise) sense of magma-flow kinematics:

fallsjames_26

This one is a beauty. It’s almost perfectly circular in cross-section, though with little flanges coming off the upper left and lower right. However, the “tails” are both on the same side of the xenolith, so I don’t really feel like I’ve got a good bead on its kinematics:

fallsjames_19

A few more shots of these xenoliths:

fallsjames_22

fallsjames_20

This one is a cool one…

fallsjames_16

… because when you zoom in on the edge, you can see it has some ptygmatic folding inside it. Like the foliation and the broader folding we observed earlier, this internal structure suggests that these are genuine xenoliths; fragments of pre-deformed country rock.

fallsjames_17

Another xenolith, also showing this internal deformation of ptygmatically-folded granite dikes:

fallsjames_21

…And this one shows internal boudinage:

fallsjames_14

Chuck examines a small vertical surface to get a sense of what these xenoliths are doing in the third dimension:

fallsjames_23

This next bit was a real treat for me. It’s no secret that I’m a huge fan of boudinage, that brittle-ductile phenomenon that separates a more competent rock type into sausage-like chunks while a less competent rock type flows into the void between those chunks. Here’s some schlieren that evidently became thick enough slabs of biotite that they were able to behave as semi-coherent sheets, subject to boudinage:

fallsjames_15

…Not only that, but if you back out and follow these boudinaged schlieren along strike, you can see that they are folded, too! Check out these sweet isoclinally folded, boudinaged schlieren:

fallsjames_18

Biotite-rich inclusions which I interpret as similar “scraps of schlieren” which became entrained in later magmatic flows:

fallsjames_25

fallsjames_24

While everything I’ve talked about so far has been concordant with the dominant schlieren orientation (and thus reflective of main-stage magmatic flow in the Petersburg Granite), there are also some discordant features, like dikes, which cut across the regional fabric.

Here, for example, is an aplite dike:

fallsjames_02

Aplite is very felsic and displays a “sugary” fine-grained texture. This aplite dike is quite a nice feature, traceable over a long distance across the outcrop. We followed it a ways to a spot that Chuck was particularly eager to show us: a spot where the aplite dike crosses an earlier pegmatite dike, and then both dikes are cut by a right-lateral fault and a fracture set which parallels the schlieren. Check it out in outcrop (note the positive relief on the aplite dike):

fallsjames_03

And here’s a sketch of this outcrop (above photograph from the perspective of the lower right corner):

cross-cutting-belle_isle

What a fine spot to bring students and have them suss out the order of events! First came the massive granite, then the pegmatite dike, then the aplite dike, then sometime later under very different P/T conditions, the rock was fractured and we get fractures: some of which show an apparent right-lateral offset (faults; oriented ENE), and others where no offset is apparent (joints). This second set appears to be utilizing the schlieren as zones of weakness, as it is parallel to the schlieren (NNE) and often occurs along their biotite-rich traces.

Whether the faulting or the jointing came first is a question we’ll examine in the next episode

Sugarloaf

Sunday morning, NOVA adjunct geology instructor Chris Khourey and I went out to Sugarloaf Mountain, near Comus, Maryland, to poke around and assess the geology. Sugarloaf is so named because it’s “held up” by erosion-resistant quartzite. It’s often dubbed “the only mountain in the Piedmont,” which refers to the Piedmont physiographic province. Here’s a map, made with GeoMapApp and annotated by me, showing the general area:

A larger version of the map can be viewed by clicking here.

On the far west, you can see the Valley & Ridge province, which ends at the Blue Ridge Thrust Fault. Then the Blue Ridge province runs east from the Blue Ridge itself to Catoctin Mountain. From there, you enter the Piedmont, including both the “crystalline” Piedmont (Paleozoic metamorphism of various ocean basin protoliths, plus infusions of granite) and the Culpeper Basin, a Triassic/Jurassic rift valley. The Potomac River cuts a series of three spectacular water gaps across the Blue Ridge province just west of Sugarloaf. Harpers Ferry, West Virginia, is located at the confluence of the Potomac and the Shenandoah Rivers by the westernmost of these water gaps, and the name for the easternmost one is “Point of Rocks.”

Here’s a look at a detail from the southeastern corner of the geologic map of the Buckeystown, MD quadrangle, by Scott Southworth and David Brezinski:
sugarloaf_geol
sugarloaf_geol_key

The map pattern shows a that the area around Sugarloaf Mountain is a doubly-plunging anticlinorium of Sugarloaf Mountain Quartzite [SMQ] and overlying (younger) Urbana Formation. Overall, it’s got that typical “Appalachian” northeast-southwest trend. Notice the thrust fault on the west side: a typical hanging wall anticline? The ridges, including the summit of Sugarloaf Mountain itself, are held up by the toughest quartzite. This overall “squashed donut” shape shows up pretty well in the physiographic map up at the top of this post.

Sugarloaf is quartzite (metamorphic), but you can clearly see the sand grains that composed its protolith (sedimentary). There’s also reports of cross-bedding, and so Chris asked me to take a look at a few structures to assess them with my point of view. I found a pervasive cleavage in the rock, far more than I would have suspected would be there. We did find bedding exposed as compositional/grain size layers in several locations, including on the summit. I also paid a lot of attention to the many quartz veins which cut the metasedimentary quartzite. These veins of “milky quartz” are often arranged in lovely en echelon series, like these tension gashes:

tension_gash_array_sugarloaf_web

I took the above photo several years ago on a visit there, but it’s typical of the sorts of stuff we saw Sunday. The kinematic sense of this outcrop would be “top to the right.” Interestingly, none of the Sugarloaf outcrops show really deformed tension gashes (i.e., they’re not folded into Z or S shapes like those I showed you a few days ago).

What we really wanted to get a sense of, though, was which way was up in these rocks. We were in search of geopetal structures: primary sedimentary structures that indicate the “younging direction” of the beds. Graded beds can do this, though I didn’t see any unambiguous graded beds in the SMQ on Sunday’s trip. We wanted some cross-beds. We found some hummocky / swaley examples, looking approximately like this USGS photograph (black & white; hammer for scale) of an outcrop somewhere “north of the summit”:

crossbedding_USGS_sugarloafImage source: USGS

Ours wasn’t as beautiful as the one pictured above, but it was clearly hummocky cross-bedding, and it was right-side-up (in beds tilted at ~30°). Interestingly, the SMQ has been correlated by Southworth and Brezinski (2003) with the Weverton Formation of the Chilhowee Group, a rock unit exposed in the Blue Ridge. Just as the Weverton is overlain by the finer-grained Harpers Formation, so too is the SMQ overlain by a finer-grained unit, the Urbana Formation. Both are interpreted as metamorphosed continental margin deposits. The Urbana is mostly phyllite in the areas I’ve seen it (including phyllite that’s full of quartz grains, a first for me). The Urbana is well exposed in a creek-side outcrop north of Sugarloaf Mountain, and I took Chris there to show him the lovely intersection of bedding and cleavage.

Here is a weathered piece of the Urbana Formation that Chris collected there, looking at the plane of cleavage (ruler in background for scale):

urbana Image source: Christopher Khourey

You can see the bedding running ~horizontally across it, though the photo cannot convey the lovely phyllitic sheen that results from waggling these samples back and forth in good light. It’s pretty cool. In places, the transition from sandy to phyllitic is gradational, probably relict graded bedding.

So, what does it mean if Southworth and Brezinski (2003) are correct in their correlation, and the Weverton and the SMQ are really the same rock layer, but in different provinces and at different metamorphic grades? Recall that the Blue Ridge province to the west is also a thrust-faulted anticlinorium, launched up and to the west by the Alleghanian Orogeny from an original position deeper in the crust and further towards the east. It’s a shard of the craton, snapped off and shoved bodily up and to the northwest. (In class, I often liken it to Joe Theismann’s leg: a compound fracture of the continental crust.) Might the Sugarloaf Mountain Anticlinorium [SMA] be a smaller version of the Blue Ridge pulling the same trick? It too is arched up and snapped off …but it would be a “Mini-Me” that’s only just surfacing, like a baby whale swimming above momma whale’s back…

whales_analogy

We know that deeper down in the Blue Ridge stratigraphy, we find the Catoctin Formation, the Swift Run Formation, and the basement complex. If we drilled down through the crest of the SMA, would we find the same units (or more metamorphosed equivalents thereof)? It’s an intriguing thought…

Transect debrief 6: folding and faulting

Okay; we are nearing the end of our Transect saga. During the late Paleozoic, mountain building began anew, and deformed all the rocks we’ve mentioned so far. This final phase of Appalachian mountain-building is the Alleghanian Orogeny. It was caused by the collision of ancestral North America with the leading edge of Gondwana. At the latitude of Virginia, that means northwestern Africa (Morocco and/or Mauritania).

Whereas the first two pulses of Appalachian mountain building were relatively provincial affairs, this Alleghanian phase was a full-on continent-on-continent smackdown. The Himalaya (India colliding with Eurasia) would be a good modern analogue for the Pennsylvanian and Mississippian Appalachians.

When I was live-blogging the trip, I posted this photo of Judy Gap:

It was a bit hard to get it all into one measly iPhone frame (hence the tilted angle: those trees are in fact vertical!), but what you’re looking at here is the erosion-resistant Tuscarora Sandstone (Silurian in age; quartz-rich beach deposits) that outcrop as a ridge. However, here at Judy Gap, there are two ridges. What gives? This is where I was introduced to a new term that is apparently becoming a common phrase in the structural geology literature: contraction fault.

The story most Physical Geology students get about fault types is that tectonic extension causes normal faults, while tectonic compression causes reverse faults. Contraction faults are faults that display an apparent “normal” sense of motion, but were caused by a compressional tectonic regime. How the heck does that work, you may ask? Consider the following diagram:

So the deal with contraction folds is that they might start out “reverse” but are then rotated and tipped over as deformation proceeds. The former footwall becomes the new “hanging wall,” and the sense of motion is obscured by this new orientation. This means that they do represent contractional strain, but a freshman geology student is unlikely to spot it at first glance.

The Germany Valley to the east of Judy Gap is a big breached plunging anticline, as I attempted to show with this iPhone photo from the Germany Valley Overlook along Route 33:

It’s a bit easier to see if you jump up in the air 10 kilometers or so. Fortunately, that’s precisely why God created Google Earth:

The valley is hemmed in by a big V-shaped fence of mountains, all held up by the Tuscarora. It’s tough stuff. During Alleghanian folding, the crest of the anticline was breached, and water was able to get inside and gut the weaker rocks. The quarry annotated in the photo is mining the same Cambrian and Ordovician carbonates seen in the Shenandoah Valley back in Virginia (Lincolnshire and Edinburg Formation equivalents). A pattern geologists have noted with eroded anticlines is that older rocks are exposed in the middle of the structure, with younger rocks flanking them along the sides.

So that’s a glimpse of the big picture of deformation in the Valley & Ridge, but we can also see cool deformation at smaller scales… Stay tuned…

Transect debrief 5: sedimentation continues

We just looked at the Chilhowee Group, a package of sediments that records the transition for the North American mid-Atlantic from Iapetan rifting through to passive margin sedimentation associated with the Sauk Sea transgression. Well, if we journey a bit further west, we see the sedimentary stack isn’t done telling its story. The saga continues through another two pulses of mountain building. Consider this “unfolded, unfaulted” east-west cross-section cartoon:

vr_stack

Part A of the image above shows the overall stratigraphic sequence for the Blue Ridge and the Valley & Ridge provinces in Virginia and West Virginia. You’ll notice that the small, detailed stratigraphic column I used to start the last two posts covers just the bottom 6 layers in this stack. Zoomed out to the bigger picture, we see ~40 layers overall. Lynn Fichter of James Madison University, one of the leaders of the Transect Trip, has published an excellent information-dense guide to the mid-Atlantic column. It’s a terrific reference for anyone looking to learn more about these rocks and the story they tell.

Part B of the image above shows the tectonic interpretation of these different packages of rock — some represent rifting, some represent passive margin sedimentation, some represent clastic influence from various orogenies occurring to the east (Taconian and Acadian).

The cartoon cross-section below, modified from an original by Steve Marshak in his excellent introductory textbook Earth: Portrait of a Planet, shows the tectonic evolution of the east coast over the past ~1 billion years of geologic time. It is reprinted here with Steve’s permission.

full_eastUS

The story begins with the Grenville Orogeny, an episode of mountain building that completes the assembly of the Rodinian supercontinent. This is followed by Iapetan rifting, followed by three pulses of Appalachian mountain-building: the Taconian (“Taconic“) Orogeny, the Acadian Orogeny, and the culminating event of Pangean supercontinental assembly, the Alleghanian (“Alleghenian”) Orogeny. Finally, Pangea breaks up in the Mesozoic, an event also known as Atlantic rifting. Two complete Wilson Cycles are preserved by the Appalachian mountain belt!

The Valley & Ridge province received sediment courtesy of the Taconian and Acadian Orogenies, but wasn’t directly involved with the tectonic collision in any deformational way. Notice how west of both those orogenies in the Marshak diagram you see a fresh layer of sediment being deposited atop the North American craton.

During the field trip, I posted some iPhone photos of the sedimentary strata that accumulated in the Valley & Ridge during the mid-Paleozoic, shed off from the orogenic activity to the east. For example, the Brallier Formation’s turbidites record a time when sea was west and mountains were east. Or the Juniata Formation’s red beds speak of a time in the late Ordovician when an advancing clastic wedge had piled sediment up above sea level. This shot of some of those red beds preserves some beautiful depositional relationships from ~440 million year old river systems.

Let’s annotate that, shall we?

juniata_anno

Even in the Ordovician, rivers did what they do today, spilling over their bansk and building up natural levees. Same as it ever was, people.

That “sediment only; no deformation” regime for the Valley & Ridge changed with the Alleghanian Orogeny. That’s when deformation propagated to the west, encompassing the flat-lying Valley & Ridge strata into a proper fold-&-thrust belt. Later, differential erosion of these folded and faulted layers would etch the landscape into a series of valleys and ridges… hence the province name. More on that deformation in the next post.

Rockies course applications open

For those of you who are potential NOVA students (really, that’s pretty much anyone on the planet), I wanted to let you know that applications are now open for the July 2010 Regional Field Geology of the Northern Rockies course that I co-teach with Pete Berquist of Thomas Nelson Community College. A more detailed description is available on my website.

Contact me via e-mail if you want more information or download an application here.

To whet your appetite, here’s Rockies 2009 student Jason Von-Kundra mapping Mississippian-aged carbonates in the Bridger Range of Montana:

Jason_maps

Fossil crinoid stem

Today, you get a photo of a fossilized crinoid stem, from the Mississippian-aged Lodgepole Limestone of the Bridger Range, north of Bozeman, Montana. A pencil is provided for scale:

crinoid_stem

Zoomed-in a bit, and cropped. The segments (“columnals”) show up nicely:

crinoid_stem_2

Crinoids are echinoderms, the invertebrate phylum which includes sea urchins and sea stars. However, at first glance you might think they were plants, as they are sessile (mainly sessile, anyhow) and have an overall form much like a kindergartner’s sketch of a flower. This morphology is where their common name, sea lilies, comes from.